跳到主要內容

上市的概念

傳統上市流程繁瑣,合規要求門檻太高..
如果今天只是某個在 Github 上的早期小項目,可不可以直接發幣呢?

發 PR 賺 token ; 發 Issue 出 token (沒有就去交易所買)

利用設計精良的 Token Economic,透過 DAO 之類的方式,可規模、可持續地 distribute token,看需求再 IEO、IDO 等等,感覺會很有趣!
像是把 VC 的概念簡化,希望能讓軟體工業回到“員工股票分紅費用化”以前的年代。

留言

這個網誌中的熱門文章

Daniel Gross 寫的太好了

Daniel Gross 顯然是一位天才,他在 19 歲就創辦 Cue ,拿到 Sequoia 投資,是他們當時投資過最年輕的創業家,最後被 Apple 收購並在其中負責 ML。之後加入 YC,26 歲又成為 YC 最年輕的 partner,專注在 AI 領域。現在則成立自己的純 remote 天使基金, Pioneer 。 - A new Google     需要下  Query Operators 的搜尋引擎代表壞掉了 - The Bionic Market     給菁英用戶的思考與生產力工具的市場分析 - 10X: Metrics for Early Stage Startups     早期新創的 Growth 指標

Implicit Factor Model - A Cross-Sectional Regression Approach

  Equity Factor Models - Build one in R with a few lines of codes A step-by-step guide to build your own fundamental factor model using R and cross-sectional regressions Alexander Popov — unsplash Multi-factor models are a must-have for investors looking to understand their portfolio’s performance drivers . It helps explain the actual return of factors such as countries, sectors, and styles, independent of other factors’ effects. In this article, we will focus on the mechanics of such models, and how to  code them in R . We also introduce a visualization that lets you visualize the factor performance contributions overtime. A Factor Model, what’s that? A factor model also called a multi-factor model, is a model that employs multiple factors to explain individual securities or a portfolio of securities. It exists at least three types of factor models: Statistical factor models  — They use methods similar to  principal component analysis  (PCA). In these models, b...

All-in Summit

判斷人類發展的趨勢,找出人類下一步最缺乏的東西,然後用科學、工程的方式提出解法,只要不被物理定律限制什麼方法都有可能。